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Abstract. The kind of two Fokker-Flanck equation Nodellings of a non-equilibrium system, 
defined by a two-variable master equation, is studied. We compute explicitly their associated 
stationary potentials in the weak noise limit, and we compare them with the exact one coming 
from the master equation. We find that a recently proposed Fokker-Planck equation is far better 
than the other coming from the commonly used Kramen-Moyal expansion. 

1. Introduction 

A Fokker-Planck equation (FPE) is a second-order partial differential equation in which 
the unknown is the probability to find a system in any given configuration at any given 
time. Usually, these kinds of equations are built by performing a continuum limit of 
some microscopic dynamical equation, by breaking some expansion of these, or simply 
by directly writing one with some desired properties. In most of the cases, the resulting 
FPE is weakly connected with the original microscopic system. Nevertheless, this type of 
modelling of physical systems has proven to be very useful for the description of different 
non-equilibrium phenomena [ I 4  In particular, the understanding of how the systems 
relax to the equilibrium state near a critical point has been achieved mainly by using these 
kinds of equations [5]. This indicates that in some cases the FPE modellings contain the 
key ingredients which are needed in order to describe these systems’ behaviour. In general, 
the latter seems to be true whenever the system properties under consideration are almost 
independent of the microscopic dynamics details and they depend only on general system 
features as symmetries, dimensions, number of ground states, etc. However, when we 
deal with properties which depend on these microscopic details, the kind of WE scheme 
considered can only be checked a posteriori by comparing the results that it yields with 
the exact ones coming from the underlying microscopic system definition. For example, 
microscopic dynamics dependent magnitudes are mean first passage times, exit rates from 
a metastable state [6,7] or stationary properties of non-equilibrium systems [8]. 

An approach to the problem of how to model a given system by means of a FPE has been 
recently proposed by the authors in order to deal with some non-equilibrium systems defined 
by a master equation [9]. The FPE is constructed in such a way that it is a priori guaranteed 
that its associated stationary probability distribution is almost the exact one around the most 
probable configuration. 
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There are in the literature several ways to build a m  from a master equation. A strategy 
similar to ours was considered before by Hanggi eta1 [6 ,7] .  Their technique allowed them 
to deal only with systems with a known stationary probability distribution. There are also 
perturbative schemes which manage to reduce a master equation to a simplified FPE in the 
vicinity of a bifurcation point [lo, 111.  

From a purely theoretical point of view the new FPE constitutes an improvement with 
respect to other previous approaches. However, when dealing with properties that depend 
not only on the local form of the stationary probability distribution around their extrema, 
but on the global shape of the same, the new method has to be tested and compared with 
others in order to analyse the degree of accuracy that it yields. 

To achieve this goal in a particular example, we consider a simple non-equilibrium 
model with two degrees of freedom and with a rich behaviour which has been studied 
previously [12]. By using some well known techniques [13-171, we compute and compare 
numerically its exact stationary non-equilibrium distribution and also the ones coming from 
the new FPE and from a currently used FPE. We found that the new FPE reproduces the 
exact distribution much more accurately than the other one. The outline of the paper is the 
following. In section 2 we define the model and we review some of its properties. Section 3 
is devoted to obtaining the exact stationary non-equilibrium distribution while explaining, 
with some detail, how to do it. In section 4 FE modellings are defined, their associated 
stationary solutions are obtained and they are compared with the exact one. 

2. The model 

The model was introduced in [12], and we refer the reader to there for a motivation and 
a more detailed construction. In order to fix notation, let us briefly recall its definition 
and some properties. In each point x of a d-dimensional lanice with N nodes, there is 
a spin variable, sz which can take values + 1  or -1. A stochastic dynamics governs the 
time evolution of the spins. This dynamics is constructed as a linear superposition of two 
different mechanisms: one attempting to drive the system to a ferromagnetic state, and 
the other to an antiferromagnetic one, defined in each case by a Gibbsian weight with a 
mean-field Hamiltonian. A system state is completely characterized by the ferromagnetic 
and antiferromagnetic order parameters: mf and mA (ImFI + lmAl 6 1). The probability to 
find the system in a state with given values of mf and mA at time t ,  say PN ( m r ,  ma; t ) ,  
evolves following the Markovian master equation: 

where 
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where K is the inverse temperature and p E [0, 11 is the relative velocity between both 
mechanisms. In the limiting cases p = 0 +d p = 1 a detailed balance condition (DBC) is 
satisfied, and the system stationary state is an equilibrium one. For general p values ~DBC 
does not hold and therefore, the stationary distribution is expected to be non-Gibbsian. In 
the deterministic limit N + 03, in which fluctuations are completely ignored, (2.1) reduces 
to 

where uF(A) and co(pF, P A ;  u F ,  u A )  are the leading terms in the N-'-expansion of mF(A) 
and (2.2), respectively. Because of the invariance of the equations under the transformations 
UF(A) + -UF(A)  we will l i t  ourselves from now on to considering only positive order 
parameter values, i.e. UF(A) > 0. 

A deterministic stationary state c* = (U;, U;) is a solution of (2.3) equated to 0. 
Its qualitative behaviour is as follows. When K + 0 there is a unique stable solution 
I$ = (0.0). When K is above a certain critical value, Kc( ' ) (p) ,  the solution I$ becomes 
unstable and there appears a new stable solution in which one of the order parameters is 
non-vanishing. There is a second critical point, K,(*)(p) > Kc(')(p),  above which two 
solutions of the following forms coexist: 2; = (uF*, 0), and 2; = (0, UA").  Both of them 
are locally stable under the dynamics given by (2.3), and they have a definite domain of 
attraction. It is clear that one of them should be a metastable state but this can only be 
precisely determined by knowing the system non-equilibrium stationary distribution. 

3. Computing the exact stationary distribution 

Let us suppose that for the master equation (2.1) a stationary probability distribution exists, 
it is unique, and that in the weak noise limit, i.e. for large N values, it can be written in 
the asymptotic form, 

P$(~F,  U A )  eXp[-NVo(UF, U A )  - O(No)l (3.1) 

where VO(UF, U A )  is the stationary non-equilibrium potential. This assumption is not 
mathematically rigorous for generic parameter values but it can be used, in any case, 
& useful ansatz to construct the stationary probability distribution [13]. To get a closed 
equation for VO(UF, U A ) ,  we substitute (3.1) into the stationary master equation (2.1). i.e. 
(a/ar)PN(uF, U A ,  I) = 0, and we perform a N-' expansion of it. The leading order of this 
expansion reads 

In order to solve (3.2)~we can interpret it as a Hamilton-Jacobi type of equation [181 where 
H is the Hamiltonian which defines the dynamics of a system with two coordinates, say UF 

and U A ,  and its two respective conjugate momenta 

(3.3) 
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In this interpretation VO(UF, U A )  becomes the system action, and it can be evaluated by 
integrating (3.3) along any path that connects a generic point of the form P = ( U F ,  U A ,  

~ F ( U F ,  U A ) ,  ~ A ( U F ,  UA)) with a potential local minimum, (U;, O,O, 0) or (0, U;, 0,O). The 
functional dependence of PF(A) = ~ F ( A ) ( u F ,  UA) is obtained in parametric form from the 
equations of motion defined as the Hamilton equations associated with the Hamiltonian U, 
that is, by solving 
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(3.5) 

with initial conditions ~ F ( A ) ( O )  = 0 at the deterministic stationary states. Because of (3.31, 
these boundary conditions are necessary to guarantee that potential V,(UF, U A )  will have a 
local minimum in the deterministic attractors, a local maximum in deterministic repellors 
and saddles in saddles of (2.3). 

All the trajectories going through a given potential minimum, are confined in one of 
two different two-dimensional invariant manifolds. One of them is the deterministic one, 
defined by (2.3), and pf(A) = 0. It is a stable manifold, and its associated potential 
V0(up, U A )  = constant is a spurious trivial solution of (3.2). The other manifold is the 
unstable one, or so-called separatrix. Therefore, curves confined to the separahices of each 
deterministic attractor are the interesting ones in order to calculate the potential. 

The latter scheme seems to be simple and powerful but, in practice, it can only 
be rigorously applied when the unknown potential, VO(UF, U A ) ,  is a twice continuously 
differentiable and monovaluated function. This is the case, for example, in equilibrium 
situations and, in general, for integrable Hamiltonians, H. In particular, our model is exactly 
solvable, i.e. integrable, in the equilibrium limits, p = 0 and 1, as well as for p = 0.5 for 
which a DBC holds. However, when dealing with non-equilibrium systems, multivaluated 
potentials are expected to arise. Then, in order to define a monovaluated function VO it is 
necessary to introduce an additional ansatz: from all the branches we only keep at each point, 
(uF, uA) ,  the one giving the mimimum value, because it gives the dominant contribution 
to (3.1). 

Let us now describe, in detail, the numerical procedure to determine the potential 
VO(UF, U A )  from (3.4) and (3.5) and the considered boundary conditions. For the sake 
of conciseness and without loss of generality, we consider a particular set of parameter 
values, p = 0.6 and K = 3, which correspond to a situation in which two different stable 
solutions of the stationary deterministic equations coexist (see last paragraph on section 2). 
The procedure is as follows: 

(i) We locate the solutions of the stationary deterministic equations, (uF*,  0) and (0, UA') 

in our case. We will call them from now onjixedpoints or attractors. 
(ii) We determine the unstable invariant manifold associated with each attractor. An 

extensive discussion about technicalities in the evaluation of invariant manifolds can be 
found in [19]. Because the non-equilibrium nature of the problem, both manifolds do not 
coincide and the process that follows has to be repeated for each deterministic attractor. 

The first step is to linearize equations (3.4) and (3.5) around the fixed point and 
then to calculate the eigenvalues and eigenvectors for the associated mahix. The pair 
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of eigenvectors corresponding to positive eigenvalues determine a basis in the tangent 
space of the unstable invariant manifold at this point. In order to define an accurate 
local approximation to the separatrix, we consider a set of different linear combinations 
of these eigenvectors, with a fixed small modulus. From this local approximation it 
is possible to reconstruct the complete separanix by leaving all the different initial 
points to evolve with the Hamiltonian flow (3.4) and (3.5). The integration of these 
equations of motion is carried out by a fourth-order Runge-Kutta algorithm. Working 
with small enough integration steps, the Hamiltonian value is conserved up to the 
required precision (four decimal digits), therefore, a more elaborate symplectic algorithm 
is not necessary to deal with this dynamical system. The main difficulty at this 
point is that it is not possible to know a priori how to distribute the initial points 
to explore all the separatrix. We have considered homogeneously distributed initial 
points and, once the main structure of the separatrix is known, we interpolate new 
initial conditions between the previous ones in order to fill as uniformly as possible 
the separatrix with these trajectories. In this way we have a se t~of  curves whose 
enveloping surface is the separatrix. The first approximation to the non-equilibrium 
potential at any point at the separanix of each attractor is then calculated by evaluating 
the integral 

Notice that VO(UF(O), u,+(O)) can be replaced by a constant which depends on the attractor: 
C1 for ( v F * ,  0) and C, for (0, U,+*). The error we make by doing that is of the order 
E ~ ,  E being the distance from the initial point to the attractor. Considering E values small 
enough the error can be kept below the precision we work with. Finally, for each point 
( v F ,  U,+) where two or more trajectories overlap, the minimum value of Vo(uF, U,+) has 
to be selected. Technically it is done by projecting the trajectories over a discrete set 
of values ( u F ,  U,+) that define a lattice, and then by keeping the minimum value at each 
node. 

(iii) The last step, once both local pieces of the potential have been determined, is to 
join them and to fix their relative depths, i.e. by evaluating the constants C1 and C2. The 
general principle which allows us to fix the constants is the balance between the incoming 
and outgoing fluxes of the stationary probability distribution from each domain of attraction 
[2,16]. The logarithm of the exit rate from an attractor M can be written in the weak noise 
limit as Vo(M) -minp Vo(P) where the minimum is taken in the set of points P belonging 
to the curve which limits the domains of attraction, under the deterministic equations (2.3), 
of the attractor M. In our case, the minima for both attractors coincide and are located 
at the deterministic saddle point. Therefore at this point both local potential values have 
to be equal. For the considered choice of parameters we obtain Cz = 0.2934.. . + C1. 

This indicates that a fluctuation carrying the system from~ (0, UA")  to (uF*,  0) appears to 
be much more likely than the opposite one. Therefore, the solution gI is a metastable 
state. The remaining free constant can be fixed by normalizing the stationary probability 
distribution. 

The potential calculated following the above three steps has been represented in 
figure 1. The main feature we want to stress is that it is continuous, hut there is a line 
in configurational space in which it is not differentiable. , This line corresponds to the 
boundary in which the minimum is transferred from one local piece of the potential to the 
other. Roughly it goes parallel to the axis UA crossing at u~ = 0.27. This effect is shown 
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Figure 1. Effective stationary potential calculated in section 3 is represented versus ( V F .  “ A ) .  

Pairs ( W F .  “ A )  with U F  + V A  a I are meaningless. For these values we draw VO(VF, “ A )  = 1. 
The presence of two minima. MI and MI, and the saddle paint, S. are clearly shown. 

Figure 2. The lower area corresponds to a section of the potential VO(UF,  UA) with U A  = 0. 
This is obtained by taking the minimum of the WO different branches. Vd” and Vi” which 
are built hom the minima MI and Mz respectively. Close to VF = 0.25. the minimum of the 
potential is transferred hom one branch to the 0 t h .  At this point the resulting potential is 
clearly non-differentiable. 

more clearly in figure 2, where a section, U A  = 0, of the two local pieces of the potential 
is represented versus uF. It is clear that the minimization procedure is responsible for the 
presence of non-differenciabilities in the resulting potential. 
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4. Two FPE modellings and their stationary solutions 

As we said in the introduction, it is ow purpose to take advantage of the knowledge 
we have of the exact stationary potential in order to test two different FPE modellings 
of this systems. The first one is the R E  coming from the N-' expansion of the master 
equation (2.1) (JSramers-Moyal expansion) truncated up to second-order derivatives. This 
is the most frequently used method to obtain a FPE from a master equation [3,4]. In our 
case, this FPE (from now on FPE-KM) reads 

where A is given by (2.3) and 

The second FPE is the one proposed in [9] which in our case reads 

(4.1) 

(4.2) 

(4.3) 

where the plus (minus) sign stands for Y equal (different) to Z. By construction, it 
is guaranteed that this new FPE (FPE-N) reproduces the exact stationary potential in the 
equilibrium limits, as well as in the vicinity of the deterministic attractors [9]. 

Substitution of (3.1) in (4.1) and (4.3) respectively leads to two different Hamilton- 
Jacobi-type equations. Each them is analogous to (3.2). The procedure to obtain the 
stationary potential for each equation follows the same lines as we have already explained 
in section 3. The main results can be summarized as follows: 

(i) The qualitative form of the stationary potential, VO, the location of the extrema, the 
saddle point, and the curvatures around the minima, coincides in both approximations with 
their master equation counterparts. 

(ii) The potential associated with the FE-KM, Vom, is qualitatively similar to the one 
shown in figure 1 for the exact potential VO. However, Vm presents quantitative systematic 

(ii) m=(,,,,,) IVom(u~. UA)  - VO(UF. VA)I /VO(UF, U A )  0.05. and (iii) (IVom(u~, U A )  - 
VO(UF. UA)~) N 0.004, where (.) is the average over the phase space. 

deviations with respect to Vo. In particular: (i) Vo d ( U F ,  UA) < VO(UF, UA) V(UF. UA), 
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Table 1. The values of the exact and approximate potentials are shown for different values of 
( U F .  "1). The associated error is 5 x IO-'. In all the points the PE-N modelling yields bener 
results than the WE-KM. 

Point Exact FPE-N PE-KM 

MI 0.0 0.0 0.0 
M2 0.293 0.293 0.284 
(0.0) 0.362 0.362 0.352 
S 0.304 0.304 0.294 

Figure 3. Potentials section for V F  = 0.2. The differences between the exact potential and the 
approximate ones, corresponding to the Kramen-Moyal and the new Fokker-Planck equation 
modellings. are put forward. 

(iii) The potential solution of the FE-N,  V!, has a much better behaviour than Vow. 
It has no systematic deviations with respect to the exact potential. It fluctuates around 
the exact solution along the phase space. The averaged amplitude of this fluctuation is 
(IV:(UF, I J A )  - VO(UF-, UA ) ~ )  Y 7 x lO-5. That is, two orders of magnitude less than the 
deviations associated to Vow. In fact, within the precision degree we are working with, we 
can conclude that our F E  gives an almost exact result. 

(iv) In order to compare both approximations we present table 1, and show in figures 3 
and 4 two different sections of the different potentials (in figure 3 we fix UF = 0.2 and, in 
figure 4: u p  + uA = 0.775). As can be seen in both figures, the differences between the 
master equation potential and V t  are small at all points, and less than the numerical error in 
any case. On the other hand, it is clear that Vow presents systematic differences with respect 
to the exact potential. In particular, in the saddle point, S, we have VO - V:" = 0.01 (see 
table 1) which means that this approximation overestimates the exit rate from the deeper 
(ferromagnetic) minima. In contrast, the WE-N reproduces correctly the potential value at 
the saddle point. Analogously, as can be deduced from the data in table 1, the m-m 
overestimates the exit rates from (U;, 0) to (-U;, 0) and from (0, U ; )  to (0, - U > ) ,  while 
FPE-N gives the correct results. 
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Figure 4. A different section of the three potentials. The potential associated to WE-N compares 
far bener with the exact one than the one associated with the WE-KM. 

5. Conclusions 

We have suggested that a recently proposed FPE modelling of non-equilibrium master 
equations, FPE-N, gives better results in the low noise limit than the conventional approach 
based on a truncated Kramers-Moyal expansion, FPE-KM. In the vicinity of the deterministic 
extrema it is guaranteed by construction that FPE-N reproduces the exact stationary 
distribution [9]. What we have verified in a particular exactly solvable model is that, even 
far from the extrema, where there is no a priori rigourous justification of this modelling, 
it reproduces the low noise stationary potential much better than the usual Kramers-Moyal 
modelling. 
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